Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37.331
Filtrar
1.
Front Immunol ; 15: 1342335, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596688

RESUMEN

Introduction: Human leukocyte antigen (HLA) I molecules present antigenic peptides to activate CD8+ T cells. Type 1 Diabetes (T1D) is an auto-immune disease caused by aberrant activation of the CD8+ T cells that destroy insulin-producing pancreatic ß cells. Some HLA I alleles were shown to increase the risk of T1D (T1D-predisposing alleles), while some reduce this risk (T1D-protective alleles). Methods: Here, we compared the T1D-predisposing and T1D-protective allotypes concerning peptide binding, maturation, localization and surface expression and correlated it with their sequences and energetic profiles using experimental and computational methods. Results: T1D-predisposing allotypes had more peptide-bound forms and higher plasma membrane levels than T1D-protective allotypes. This was related to the fact that position 116 within the F pocket was more conserved and made more optimal contacts with the neighboring residues in T1D-predisposing allotypes than in protective allotypes. Conclusion: Our work uncovers that specific polymorphisms in HLA I molecules potentially influence their susceptibility to T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Humanos , Linfocitos T CD8-positivos , Antígenos de Histocompatibilidad Clase I , Péptidos/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidad/metabolismo
2.
Commun Biol ; 7(1): 425, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589539

RESUMEN

Treatment of pneumococcal infections is limited by antibiotic resistance and exacerbation of disease by bacterial lysis releasing pneumolysin toxin and other inflammatory factors. We identified a previously uncharacterized peptide in the Klebsiella pneumoniae secretome, which enters Streptococcus pneumoniae via its AmiA-AliA/AliB permease. Subsequent downregulation of genes for amino acid biosynthesis and peptide uptake was associated with reduction of pneumococcal growth in defined medium and human cerebrospinal fluid, irregular cell shape, decreased chain length and decreased genetic transformation. The bacteriostatic effect was specific to S. pneumoniae and Streptococcus pseudopneumoniae with no effect on Streptococcus mitis, Haemophilus influenzae, Staphylococcus aureus or K. pneumoniae. Peptide sequence and length were crucial to growth suppression. The peptide reduced pneumococcal adherence to primary human airway epithelial cell cultures and colonization of rat nasopharynx, without toxicity. We identified a peptide with potential as a therapeutic for pneumococcal diseases suppressing growth of multiple clinical isolates, including antibiotic resistant strains, while avoiding bacterial lysis and dysbiosis.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Ratas , Animales , Humanos , Klebsiella pneumoniae , Proteínas de Transporte de Membrana/metabolismo , Nasofaringe/microbiología , Infecciones Neumocócicas/microbiología , Péptidos/farmacología , Péptidos/metabolismo
3.
Brain Nerve ; 76(4): 391-397, 2024 Apr.
Artículo en Japonés | MEDLINE | ID: mdl-38589283

RESUMEN

Amyloid fibril formation is a general property of proteins and peptides. It is a physicochemical phenomenon similar to crystallization, in which amyloid precursor proteins exceeding solubility precipitate through the breakdown of supersaturation. Using the ultrasonication-forced amyloid fibril inducer HANABI, we have discovered that serum albumin acts as an inhibitor in dialysis-related amyloidosis. Exploring the factors that induce or inhibit amyloid fibril formation using HANABI can lead to the development of early diagnosis and prevention methods for amyloidosis.


Asunto(s)
Amiloide , Amiloidosis , Humanos , Amiloide/química , Amiloide/metabolismo , Factores Biológicos , Amiloidosis/etiología , Amiloidosis/metabolismo , Péptidos/metabolismo
4.
Front Immunol ; 15: 1369238, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585273

RESUMEN

Introduction: Exosome-enriched small extracellular vesicles (sEVs) are nanosized organelles known to participate in long distance communication between cells, including in the skin. Atopic dermatitis (AD) is a chronic inflammatory skin disease for which filaggrin (FLG) gene mutations are the strongest genetic risk factor. Filaggrin insufficiency affects multiple cellular function, but it is unclear if sEV-mediated cellular communication originating from the affected keratinocytes is also altered, and if this influences peptide and lipid antigen presentation to T cells in the skin. Methods: Available mRNA and protein expression datasets from filaggrin-insufficient keratinocytes (shFLG), organotypic models and AD skin were used for gene ontology analysis with FunRich tool. sEVs secreted by shFLG and control shC cells were isolated from conditioned media by differential centrifugation. Mass spectrometry was carried out for lipidomic and proteomic profiling of the cells and sEVs. T cell responses to protein, peptide, CD1a lipid antigens, as well as phospholipase A2-digested or intact sEVs were measured by ELISpot and ELISA. Results: Data analysis revealed extensive remodeling of the sEV compartment in filaggrin insufficient keratinocytes, 3D models and the AD skin. Lipidomic profiles of shFLGsEV showed a reduction in the long chain (LCFAs) and polyunsaturated fatty acids (PUFAs; permissive CD1a ligands) and increased content of the bulky headgroup sphingolipids (non-permissive ligands). This resulted in a reduction of CD1a-mediated interferon-γ T cell responses to the lipids liberated from shFLG-generated sEVs in comparison to those induced by sEVs from control cells, and an increase in interleukin 13 secretion. The altered sEV lipidome reflected a generalized alteration in the cellular lipidome in filaggrin-insufficient cells and the skin of AD patients, resulting from a downregulation of key enzymes implicated in fatty acid elongation and desaturation, i.e., enzymes of the ACSL, ELOVL and FADS family. Discussion: We determined that sEVs constitute a source of antigens suitable for CD1a-mediated presentation to T cells. Lipids enclosed within the sEVs secreted on the background of filaggrin insufficiency contribute to allergic inflammation by reducing type 1 responses and inducing a type 2 bias from CD1a-restricted T cells, thus likely perpetuating allergic inflammation in the skin.


Asunto(s)
Dermatitis Atópica , Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Proteínas Filagrina , Inflamación , Proteínas de Filamentos Intermediarios/genética , Queratinocitos , Lípidos , Péptidos/metabolismo , Proteómica , Linfocitos T/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(17): e2319476121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38621120

RESUMEN

Glycerophospholipids are synthesized primarily in the cytosolic leaflet of the endoplasmic reticulum (ER) membrane and must be equilibrated between bilayer leaflets to allow the ER and membranes derived from it to grow. Lipid equilibration is facilitated by integral membrane proteins called "scramblases." These proteins feature a hydrophilic groove allowing the polar heads of lipids to traverse the hydrophobic membrane interior, similar to a credit card moving through a reader. Nevertheless, despite their fundamental role in membrane expansion and dynamics, the identity of most scramblases has remained elusive. Here, combining biochemical reconstitution and molecular dynamics simulations, we show that lipid scrambling is a general feature of protein insertases, integral membrane proteins which insert polypeptide chains into membranes of the ER and organelles disconnected from vesicle trafficking. Our data indicate that lipid scrambling occurs in the same hydrophilic channel through which protein insertion takes place and that scrambling is abolished in the presence of nascent polypeptide chains. We propose that protein insertases could have a so-far-overlooked role in membrane dynamics as scramblases.


Asunto(s)
Proteínas de la Membrana , Péptidos , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Péptidos/metabolismo , Membranas/metabolismo , Lípidos , Membrana Dobles de Lípidos/química
6.
Mol Biol Rep ; 51(1): 513, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622345

RESUMEN

BACKGROUND: In recent years, anti-angiogenic peptides have received considerable attention as candidates for cancer treatment. Arresten is an angiogenesis inhibitor that cleaves from the α1 chain of type IV collagen and stimulates apoptosis in endothelial cells. We have recently indicated that a peptide corresponding to the amino acid 78 to 86 of arresten, so-called Ars, prevented the migration and tube formation of HUVECs and the colon carcinoma growth in mice significantly. The current study aimed to determine whether induction of apoptotic cell death in endothelial cells is one of the biochemical mechanisms of this anti-angiogenic peptide. METHODS AND RESULTS: This hypothesis was assessed using the MTT assay, cell cycle analysis, Annexin V-FITC/PI staining, BCL2, CASP8, CASP9, p53, and CDKN2A gene expression studies as well as evaluating apoptosis in tumor tissues by TUNEL assay. Results demonstrated that 40 µM of Ars significantly stimulated 46.2% of early and late apoptosis in HUVECs compared to 13.6% in the untreated cells and did not significantly alter the cell cycle distribution. Moreover, BCL2 and CASP8 were down-regulated, while CASP9 and p53 were up-regulated in endothelial cells. CDKN2A gene expression, the regulator of G1 cell cycle arrest, was not significantly altered. CONCLUSIONS: It might be suggested that Ars induced apoptosis in endothelial cells through the mitochondrial pathway and had no effect on the cell cycle. Besides, Ars induced apoptosis significantly in vivo. However, further studies are required to confirm the detailed molecular mechanism of Ars, this peptide has the potential to be optimized for clinical translations.


Asunto(s)
Células Endoteliales , Proteína p53 Supresora de Tumor , Ratones , Animales , Células Endoteliales/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis , Péptidos/farmacología , Péptidos/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proliferación Celular , Línea Celular Tumoral
7.
Vaccine ; 42(12): 3075-3083, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38584060

RESUMEN

As the major outer membrane protein (OMP) presents in the Pasteurella multocida envelope, OmpH was frequently expressed for laboratory assessments of its immunogenicity against P. multocida infections, but the results are not good. In this study, we modified OmpH with dendritic cell targeting peptide (Depeps) and/or Salmonella FliCd flagellin, and expressed three types of recombinant proteins with the MBP tag (rDepeps-FliC-OmpH-MBP, rDepeps-OmpH-MBP, rFliC-OmpH-MBP). Assessments in mouse models revealed that vaccination with rDepeps-FliC-OmpH-MBP, rDepeps-OmpH-MBP, or rFliC-OmpH-MBP induced significant higher level of antibodies as well as IFN-γ and IL-4 in murine sera than vaccination with rOmpH-MBP (P < 0.5). Vaccination with the three modified proteins also provided increased protection (rDepeps-FliC-OmpH-MBP, 70 %; rDepeps-OmpH-MBP, 50 %; rFliC-OmpH-MBP, 60 %) against P. multocida serotype D compared to vaccination with rOmpH-MBP (30 %). In mice vaccinated with different types of modified OmpHs, a significantly decreased bacterial strains were recovered from bloods, lungs, and spleens compared to rOmpH-MBP-vaccinated mice (P < 0.5). Notably, our assessments also demonstrated that vaccination with rDepeps-FliC-OmpH-MBP provided good protection against infections caused by a heterogeneous group of P. multocida serotypes (A, B, D). Our above findings indicate that modification with DCpep and Salmonella flagellin could be used as a promising strategy to improve vaccine effectiveness.


Asunto(s)
Infecciones por Pasteurella , Pasteurella multocida , Animales , Ratones , Serogrupo , Infecciones por Pasteurella/prevención & control , Flagelina/metabolismo , Proteínas de la Membrana Bacteriana Externa , Péptidos/metabolismo , Células Dendríticas , Vacunas Bacterianas
8.
ACS Synth Biol ; 13(4): 1382-1392, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38598783

RESUMEN

The functional analysis of protein nanopores is typically conducted in planar lipid bilayers or liposomes exploiting high-resolution but low-throughput electrical and optical read-outs. Yet, the reconstitution of protein nanopores in vitro still constitutes an empiric and low-throughput process. Addressing these limitations, nanopores can now be analyzed using the functional nanopore (FuN) screen exploiting genetically encoded fluorescent protein sensors that resolve distinct nanopore-dependent Ca2+ in- and efflux patterns across the inner membrane of Escherichia coli. With a primary proof-of-concept established for the S2168 holin, and thereof based recombinant nanopore assemblies, the question arises to what extent alternative nanopores can be analyzed with the FuN screen and to what extent alternative fluorescent protein sensors can be adapted. Focusing on self-assembling membrane peptides, three sets of 13 different nanopores are assessed for their capacity to form nanopores in the context of the FuN screen. Nanopores tested comprise both natural and computationally designed nanopores. Further, the FuN screen is extended to K+-specific fluorescent protein sensors and now provides a capacity to assess the specificity of a nanopore or ion channel. Finally, a comparison to high-resolution biophysical and electrophysiological studies in planar lipid bilayers provides an experimental benchmark for future studies.


Asunto(s)
Nanoporos , Membrana Dobles de Lípidos/metabolismo , Liposomas , Péptidos/metabolismo , Canales Iónicos
9.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38561979

RESUMEN

Peptide binding to major histocompatibility complex (MHC) proteins plays a critical role in T-cell recognition and the specificity of the immune response. Experimental validation such peptides is extremely resource-intensive. As a result, accurate computational prediction of binding peptides is highly important, particularly in the context of cancer immunotherapy applications, such as the identification of neoantigens. In recent years, there is a significant need to continually improve the existing prediction methods to meet the demands of this field. We developed ConvNeXt-MHC, a method for predicting MHC-I-peptide binding affinity. It introduces a degenerate encoding approach to enhance well-established panspecific methods and integrates transfer learning and semi-supervised learning methods into the cutting-edge deep learning framework ConvNeXt. Comprehensive benchmark results demonstrate that ConvNeXt-MHC outperforms state-of-the-art methods in terms of accuracy. We expect that ConvNeXt-MHC will help us foster new discoveries in the field of immunoinformatics in the distant future. We constructed a user-friendly website at http://www.combio-lezhang.online/predict/, where users can access our data and application.


Asunto(s)
Péptidos , Péptidos/metabolismo , Unión Proteica
10.
Pestic Biochem Physiol ; 200: 105840, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582602

RESUMEN

CAPA neuropeptides regulate the diuresis/ antidiuresis process in insects by activating specific cognate receptor, CAPAr. In this study, we characterized the CAPAr gene (BtabCAPAr) in the whitefly, Bemisia tabaci Asia II 1. The two alternatively spliced isoforms of BtabCAPAr gene, BtabCAPAr-1 and BtabCAPAr-2, having six and five exons, respectively, were identified. The BtabCAPAr gene expression was highest in adult whitefly as compared to gene expression in egg, nymphal and pupal stages. Among the three putative CAPA peptides, CAPA-PVK1 and CAPA-PVK2 strongly activated the BtabCAPAr-1 with very low EC50 values of 0.067 nM and 0.053 nM, respectively, in heterologous calcium mobilization assays. None of the peptide activated the alternatively spliced isoform BtabCAPAr-2 that has lost the transmembrane segments 3 and 4. Significant levels of mortality were observed when whiteflies were fed with CAPA-PVK1 at 1.0 µM (50.0%), CAPA-PVK2 at 100.0 nM (43.8%) and CAPA-tryptoPK 1.0 µM (40.0%) at the 96 h after the treatment. This study provides valuable information to design biostable peptides to develop a class of insecticides.


Asunto(s)
Hemípteros , Neuropéptidos , Animales , Péptidos/metabolismo , Neuropéptidos/química , Neuropéptidos/genética , Neuropéptidos/metabolismo , Transducción de Señal , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Hemípteros/genética , Hemípteros/metabolismo
11.
Nat Commun ; 15(1): 3146, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605029

RESUMEN

Despite their lack of a defined 3D structure, intrinsically disordered regions (IDRs) of proteins play important biological roles. Many IDRs contain short linear motifs (SLiMs) that mediate protein-protein interactions (PPIs), which can be regulated by post-translational modifications like phosphorylation. 20% of pathogenic missense mutations are found in IDRs, and understanding how such mutations affect PPIs is essential for unraveling disease mechanisms. Here, we employ peptide-based interaction proteomics to investigate 36 disease-associated mutations affecting phosphorylation sites. Our results unveil significant differences in interactomes between phosphorylated and non-phosphorylated peptides, often due to disrupted phosphorylation-dependent SLiMs. We focused on a mutation of a serine phosphorylation site in the transcription factor GATAD1, which causes dilated cardiomyopathy. We find that this phosphorylation site mediates interaction with 14-3-3 family proteins. Follow-up experiments reveal the structural basis of this interaction and suggest that 14-3-3 binding affects GATAD1 nucleocytoplasmic transport by masking a nuclear localisation signal. Our results demonstrate that pathogenic mutations of human phosphorylation sites can significantly impact protein-protein interactions, offering insights into potential molecular mechanisms underlying pathogenesis.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Péptidos , Humanos , Fosforilación , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Regulación de la Expresión Génica , Mutación , Proteínas Intrínsecamente Desordenadas/metabolismo , Unión Proteica , Sitios de Unión , Proteínas del Ojo/genética
12.
Nat Commun ; 15(1): 3159, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605040

RESUMEN

How RNA-binding proteins (RBPs) convey regulatory instructions to the core effectors of RNA processing is unclear. Here, we document the existence and functions of a multivalent RBP-effector interface. We show that the effector interface of a conserved RBP with an essential role in metazoan development, Unkempt, is mediated by a novel type of 'dual-purpose' peptide motifs that can contact two different surfaces of interacting proteins. Unexpectedly, we find that the multivalent contacts do not merely serve effector recruitment but are required for the accuracy of RNA recognition by Unkempt. Systems analyses reveal that multivalent RBP-effector contacts can repurpose the principal activity of an effector for a different function, as we demonstrate for the reuse of the central eukaryotic mRNA decay factor CCR4-NOT in translational control. Our study establishes the molecular assembly and functional principles of an RBP-effector interface.


Asunto(s)
Proteínas de Unión al ARN , ARN , Animales , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Procesamiento Postranscripcional del ARN , Péptidos/metabolismo
13.
J Chem Inf Model ; 64(8): 3430-3442, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38588472

RESUMEN

Peptide dendrimers are a type of branched, symmetric, and topologically well-defined molecule that have already been used as delivery systems for nucleic acid transfection. Several of the most promising sequences showed high efficiency in many key steps of transfection, namely, binding siRNA, entering cells, and evading the endosome. However, small changes to the peptide dendrimers, such as in the hydrophobic core, the amino acid chirality, or the total available charges, led to significantly different experimental results with unclear mechanistic insights. In this work, we built a computational model of several of those peptide dendrimers (MH18, MH13, and MH47) and some of their variants to study the molecular details of the structure and function of these molecules. We performed CpHMD simulations in the aqueous phase and in interaction with a lipid bilayer to assess how conformation and protonation are affected by pH in different environments. We found that while the different peptide dendrimer sequences lead to no substantial structural differences in the aqueous phase, the total charge and, more importantly, the total charge density are key for the capacity of the dendrimer to interact and destabilize the membrane. These dendrimers become highly charged when the pH changes from 7.5 to 4.5, and the presence of a high charge density, which is decreased for MH47 that has four fewer titratable lysines, is essential to trigger membrane destabilization. These findings are in excellent agreement with the experimental data and help us to understand the high efficiency of some dendrimers and why the dendrimer MH47 is unable to complete the transfection process. This evidence provides further understanding of the mode of action of these peptide dendrimers and will be pivotal for the future design of new sequences with improved transfection capabilities.


Asunto(s)
Dendrímeros , Endosomas , Péptidos , Dendrímeros/química , Endosomas/metabolismo , Péptidos/química , Péptidos/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Simulación de Dinámica Molecular , Concentración de Iones de Hidrógeno , Electricidad Estática , Modelos Moleculares
14.
Microb Cell Fact ; 23(1): 104, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594681

RESUMEN

BACKGROUND: Single-cell droplet microfluidics is an important platform for high-throughput analyses and screening because it provides an independent and compartmentalized microenvironment for reaction or cultivation by coencapsulating individual cells with various molecules in monodisperse microdroplets. In combination with microbial biosensors, this technology becomes a potent tool for the screening of mutant strains. In this study, we demonstrated that a genetically engineered yeast strain that can fluorescently sense agonist ligands via the heterologous expression of a human G-protein-coupled receptor (GPCR) and concurrently secrete candidate peptides is highly compatible with single-cell droplet microfluidic technology for the high-throughput screening of new agonistically active peptides. RESULTS: The water-in-oil microdroplets were generated using a flow-focusing microfluidic chip to encapsulate engineered yeast cells coexpressing a human GPCR [i.e., angiotensin II receptor type 1 (AGTR1)] and a secretory agonistic peptide [i.e., angiotensin II (Ang II)]. The single yeast cells cultured in the droplets were then observed under a microscope and analyzed using image processing incorporating machine learning techniques. The AGTR1-mediated signal transduction elicited by the self-secreted Ang II peptide was successfully detected via the expression of a fluorescent reporter in single-cell yeast droplet cultures. The system could also distinguish Ang II analog peptides with different agonistic activities. Notably, we further demonstrated that the microenvironment of the single-cell droplet culture enabled the detection of rarely existing positive (Ang II-secreting) yeast cells in the model mixed cell library, whereas the conventional batch-culture environment using a shake flask failed to do so. Thus, our approach provided compartmentalized microculture environments, which can prevent the diffusion, dilution, and cross-contamination of peptides secreted from individual single yeast cells for the easy identification of GPCR agonists. CONCLUSIONS: We established a droplet-based microfluidic platform that integrated an engineered yeast biosensor strain that concurrently expressed GPCR and self-secreted the agonistic peptides. This offers individually isolated microenvironments that allow the culture of single yeast cells secreting these peptides and gaging their signaling activities, for the high-throughput screening of agonistic peptides. Our platform base on yeast GPCR biosensors and droplet microfluidics will be widely applicable to metabolic engineering, environmental engineering, and drug discovery.


Asunto(s)
Microfluídica , Saccharomyces cerevisiae , Humanos , Microfluídica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Péptidos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Ensayos Analíticos de Alto Rendimiento
15.
Biochem Soc Trans ; 52(2): 719-731, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38563485

RESUMEN

The aggregation of proteins into amyloid-like fibrils is seen in many neurodegenerative diseases. Recent years have seen much progress in our understanding of these misfolded protein inclusions, thanks to advances in techniques such as solid-state nuclear magnetic resonance (ssNMR) spectroscopy and cryogenic electron microscopy (cryo-EM). However, multiple repeat-expansion-related disorders have presented special challenges to structural elucidation. This review discusses the special role of ssNMR analysis in the study of protein aggregates associated with CAG repeat expansion disorders. In these diseases, the misfolding and aggregation affect mutant proteins with expanded polyglutamine segments. The most common disorder, Huntington's disease (HD), is connected to the mutation of the huntingtin protein. Since the discovery of the genetic causes for HD in the 1990s, steady progress in our understanding of the role of protein aggregation has depended on the integrative and interdisciplinary use of multiple types of structural techniques. The heterogeneous and dynamic features of polyQ protein fibrils, and in particular those formed by huntingtin N-terminal fragments, have made these aggregates into challenging targets for structural analysis. ssNMR has offered unique insights into many aspects of these amyloid-like aggregates. These include the atomic-level structure of the polyglutamine core, but also measurements of dynamics and solvent accessibility of the non-core flanking domains of these fibrils' fuzzy coats. The obtained structural insights shed new light on pathogenic mechanisms behind this and other protein misfolding diseases.


Asunto(s)
Péptidos , Péptidos/química , Péptidos/metabolismo , Humanos , Amiloide/química , Amiloide/metabolismo , Agregado de Proteínas , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/genética , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Pliegue de Proteína , Espectroscopía de Resonancia Magnética/métodos , Resonancia Magnética Nuclear Biomolecular/métodos
16.
J Biomed Opt ; 29(4): 046002, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38633382

RESUMEN

Significance: Head and neck squamous cell carcinoma (HNSCC) has a particularly poor prognosis. Improving the surgical resection boundary, reducing local recurrence, and ultimately ameliorating the overall survival rate are the treatment goals. Aim: To obtain a complete surgical resection (R0 resection), we investigated the use of a fluorescent imaging probe that targets the integrin subtype αvß6, which is upregulated in many kinds of epithelial cancer, using animal models. Approach: αvß6 expression was detected using polymerase chain reaction (PCR) and immunoprotein blotting of human tissues for malignancy. Protein expression localization was observed. αvß6 and epidermal growth factor receptor (EGFR) were quantified by PCR and immunoprotein blotting, and the biosafety of targeting the αvß6 probe material was examined using Cell Counting Kit-8 assays. Indocyanine green (ICG) was used as a control to determine the localization of the probe at the cellular level. In vivo animal experiments were conducted through tail vein injections to evaluate the probe's imaging effect and to confirm its targeting in tissue sections. Results: αvß6 expression was higher than EGFR expression in HNSCC, and the probe showed good targeting in in vivo and in vitro experiments with a good safety profile. Conclusions: The ICG-αvß6 peptide probe is an exceptional and sensitive imaging tool for HNSCC that can distinguish among tumor, normal, and inflammatory tissues.


Asunto(s)
Neoplasias de Cabeza y Cuello , Verde de Indocianina , Animales , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello , Línea Celular Tumoral , Péptidos/metabolismo , Receptores ErbB , Inmunoproteínas
17.
J Am Chem Soc ; 146(15): 10240-10245, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38578222

RESUMEN

Cellular compartments formed by biomolecular condensation are widespread features of cell biology. These organelle-like assemblies compartmentalize macromolecules dynamically within the crowded intracellular environment. However, the intermolecular interactions that produce condensed droplets may also create arrested states and potentially pathological assemblies such as fibers, aggregates, and gels through droplet maturation. Protein liquid-liquid phase separation is a metastable process, so maturation may be an intrinsic property of phase-separating proteins, where nucleation of different phases or states arises in supersaturated condensates. Here, we describe the formation of both phase-separated droplets and proteinaceous fibers driven by a de novo designed polypeptide. We characterize the formation of supramolecular fibers in vitro and in bacterial cells. We show that client proteins can be targeted to the fibers in cells using a droplet-forming construct. Finally, we explore the interplay between phase separation and fiber formation of the de novo polypeptide, showing that the droplets mature with a post-translational switch to largely ß conformations, analogous to models of pathological phase separation.


Asunto(s)
Fenómenos Bioquímicos , Proteínas , Humanos , Proteínas/química , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Conformación Molecular
18.
J Immunother Cancer ; 12(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38631707

RESUMEN

BACKGROUND: The individual HLA-I genotype is associated with cancer, autoimmune diseases and infections. This study elucidates the role of germline homozygosity or allelic imbalance of HLA-I loci in esophago-gastric adenocarcinoma (EGA) and determines the resulting repertoires of potentially immunogenic peptides. METHODS: HLA genotypes and sequences of either (1) 10 relevant tumor-associated antigens (TAAs) or (2) patient-specific mutation-associated neoantigens (MANAs) were used to predict good-affinity binders using an in silico approach for MHC-binding (www.iedb.org). Imbalanced or lost expression of HLA-I-A/B/C alleles was analyzed by transcriptome sequencing. FluoroSpot assays and TCR sequencing were used to determine peptide-specific T-cell responses. RESULTS: We show that germline homozygosity of HLA-I genes is significantly enriched in EGA patients (n=80) compared with an HLA-matched reference cohort (n=7605). Whereas the overall mutational burden is similar, the repertoire of potentially immunogenic peptides derived from TAAs and MANAs was lower in homozygous patients. Promiscuity of peptides binding to different HLA-I molecules was low for most TAAs and MANAs and in silico modeling of the homozygous to a heterozygous HLA genotype revealed normalized peptide repertoires. Transcriptome sequencing showed imbalanced expression of HLA-I alleles in 75% of heterozygous patients. Out of these, 33% showed complete loss of heterozygosity, whereas 66% had altered expression of only one or two HLA-I molecules. In a FluoroSpot assay, we determined that peptide-specific T-cell responses against NY-ESO-1 are derived from multiple peptides, which often exclusively bind only one HLA-I allele. CONCLUSION: The high frequency of germline homozygosity in EGA patients suggests reduced cancer immunosurveillance leading to an increased cancer risk. Therapeutic targeting of allelic imbalance of HLA-I molecules should be considered in EGA.


Asunto(s)
Adenocarcinoma , Péptidos , Humanos , Péptidos/metabolismo , Linfocitos T , Antígenos HLA , Antígenos de Neoplasias , Desequilibrio Alélico , Adenocarcinoma/metabolismo , Células Germinativas/metabolismo
19.
J Agric Food Chem ; 72(15): 8606-8617, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38581395

RESUMEN

Peptide IRW is the first food-derived angiotensin-converting enzyme 2 (ACE2) upregulator. This study aimed to investigate the pharmacokinetic characteristics of IRW and identify the metabolites contributing to its antihypertensive activity in spontaneously hypertensive rats (SHRs). Rats were administered 100 mg of IRW/kg of the body weight via an intragastric or intravenous route. The bioavailability (F %) was determined to be 11.7%, and the half-lives were 7.9 ± 0.5 and 28.5 ± 6.8 min for gavage and injection, respectively. Interestingly, significant blood pressure reduction was not observed until 1.5 h post oral administration, or 2 h post injection, indicating that the peptide's metabolites are likely responsible for the blood pressure-lowering activity. Time-course metabolomics revealed a significant increase in the level of kynurenine, a tryptophan metabolite, in blood after IRW administration. Kynurenine increased the level of ACE2 in cells. Oral administration of tryptophan (W), but not dipeptide IR, lowered the blood pressure and upregulated aortic ACE2 in SHRs. Our study supports the key role of tryptophan and its metabolite, kynurenine, in IRW's blood pressure-lowering effects.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Hipertensión , Ratas , Animales , Ratas Endogámicas SHR , Enzima Convertidora de Angiotensina 2/metabolismo , Disponibilidad Biológica , Quinurenina/metabolismo , Quinurenina/farmacología , Triptófano/metabolismo , Péptidos/metabolismo , Antihipertensivos/farmacología , Presión Sanguínea , Hipertensión/metabolismo , Peptidil-Dipeptidasa A/metabolismo
20.
Nat Commun ; 15(1): 3302, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658535

RESUMEN

Uncontrolled secretion of ECM proteins, such as collagen, can lead to excessive scarring and fibrosis and compromise tissue function. Despite the widespread occurrence of fibrotic diseases and scarring, effective therapies are lacking. A promising approach would be to limit the amount of collagen released from hyperactive fibroblasts. We have designed membrane permeant peptide inhibitors that specifically target the primary interface between TANGO1 and cTAGE5, an interaction that is required for collagen export from endoplasmic reticulum exit sites (ERES). Application of the peptide inhibitors leads to reduced TANGO1 and cTAGE5 protein levels and a corresponding inhibition in the secretion of several ECM components, including collagens. Peptide inhibitor treatment in zebrafish results in altered tissue architecture and reduced granulation tissue formation during cutaneous wound healing. The inhibitors reduce secretion of several ECM proteins, including collagens, fibrillin and fibronectin in human dermal fibroblasts and in cells obtained from patients with a generalized fibrotic disease (scleroderma). Taken together, targeted interference of the TANGO1-cTAGE5 binding interface could enable therapeutic modulation of ERES function in ECM hypersecretion, during wound healing and fibrotic processes.


Asunto(s)
Cicatriz , Colágeno , Fibroblastos , Cicatrización de Heridas , Pez Cebra , Humanos , Animales , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Colágeno/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Cicatriz/metabolismo , Cicatriz/patología , Cicatriz/tratamiento farmacológico , Piel/metabolismo , Piel/patología , Piel/efectos de los fármacos , Fibrosis , Péptidos/farmacología , Péptidos/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Esclerodermia Sistémica/metabolismo , Esclerodermia Sistémica/tratamiento farmacológico , Esclerodermia Sistémica/patología , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA